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Abstract
We develop a fully quantum-mechanical theory for the interaction of light
and electron–hole excitations in semiconductor quantum dots. Our theoretical
analysis results in an expression for the photoluminescence intensity of
quantum dots in the linear regime. Taking into account the single-particle
Hamiltonian, the free-photon Hamiltonian, the electron–hole interaction
Hamiltonian, and the interaction of carriers with light, and applying the
Heisenberg equation of motion to the photon number expectation values, to
the carrier distribution functions and to the correlation term between the photon
generation (destruction) and electron–hole pair, we obtain a set of luminescence
equations. Under quasi-equilibrium conditions, these equations become a
closed-set of equations. We solve them analytically, in the linear regime, and
we find an approximate solution of the incoherent photoluminescence intensity.
The validity of the theoretical analysis is tested by investigating the emission
spectra in the high-temperature regime, interpreting the experimental findings
for the emission spectra of a lens-shaped In0.5Ga0.5As self-assembled quantum
dot. Our theoretical predictions for the interlevel spacing as well as for the
dephasing time caused by electron–longitudinal optical phonon interactions are
in good agreement with the experimental results.

1. Introduction

Semiconductor quantum dots (QDs) will be at the core of several technologies such as quantum
dot based lasers or quantum information for many years. Among the QDs fabricated by various
techniques, self-assembled QDs have excellent optical quality and are most suitable for the
photonic device fabrication owing to the capability of their high-density growth. A great effort
has been devoted to the understanding of the conditions that affect their size, shape, density and
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spatial arrangements. Recent experimental studies [1] pointed out that the shapes and therefore
the optical properties of QDs grown by the Stranski–Krastanov (SK) technique depend strongly
on the orientation (high-index planes) and on the growth conditions, such as the capping process
or the growth interruption.

Photoluminescence (PL) is a powerful tool for the understanding of the QDs characteristics
and it has been intensively studied in recent years both experimentally [2–5] and
theoretically [6–10].

In this paper we develop a theory for the spontaneous emission of individual quantum dots
or quantum dot molecules, taking into account the interaction of the electron–hole excitations
with light. Kira et al [11, 12] developed a microscopic theory for the spontaneous emission in
quantum wells a few years ago. On the other hand, near-field spectroscopy [13, 14] seems to be
ideally suited to investigating the properties of individual quantum dots within a dot ensemble
realized in a realistic structure. Here, we discuss the purely incoherent photoluminescence
resulting from the recombination of the excited electrons and holes. The situations in which
coherent sources resonantly excite the quantum dot and a classical driving field must be
included are beyond the scope of this analysis.

Assuming that the total Hamiltonian of the system consists of the single-particle
Hamiltonian, the free-photon Hamiltonian, the electron–hole interaction Hamiltonian, and the
Hamiltonian that expresses the interaction of carriers with light, and applying the Heisenberg
equation of motion to the photon number expectation values, to the carrier distribution
functions f μe, f νh and to the correlation term between the photon generation or destruction
and electron–hole pair destruction or generation, we obtain a set of luminescence equations.
Under incoherent [15] and quasi-equilibrium conditions, i.e., for given carrier densities, we
obtain a closed set of equations. Solving these equations analytically, in the linear regime
(1 − f μe − f νh ≈ 1), we find an approximate solution of the photoluminescence intensity.

Matsuda et al [13] investigated the PL properties of single self-assembled In0.5Ga0.5As
quantum dots, using a highly sensitive near-field scanning optical microscope at room
temperature. By employing an optimized fiber probe having a high collection efficiency and a
high spatial resolution, weak PL signals from single quantum dots were collected. Therefore,
we have decided to test our theoretically calculated emission spectra for single QDs with
the experimental PL data of an individual lens-shaped self-assembled QD reported therein
[13]. Our theoretical predictions for the interlevel spacing [13] as well as for the dephasing
time caused by electron–longitudinal optical (LO) phonon interactions [16–19] are in good
agreement with the experimental results.

2. The physical system

The physical system can be described by the following Hamiltonian:

H = Hsp + Hγ + Hcc + Hcγ . (1)

The first term describes the single-particle system in the presence of an external electric or
magnetic static field, while the second term refers to the free-photon system. Hcc and Hcγ stand
for the carrier–carrier interaction and interaction of the carrier with the background photon
field [20]. The fist three terms of the Hamiltonian are generally given by [21]. In order to
discuss their explicit form in quantum dots, we introduce the usual second-quantization field
operators in the electron–hole picture,

Ψ†(r, t) =
∑

μ

c†
μ(t)�μe∗(r) +

∑

ν

dν(t)�
νh(r)

Ψ(r, t) =
∑

μ

cμ(t)�μe(r) +
∑

ν

d†
ν (t)�

νh∗(r).
(2)
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�μe and �νh are the single-particle envelope functions [23], and μe (νh) denotes the different
electron (hole) states. Also, c†

μ and d†
ν are the electron and hole creation operators respectively.

The Hamiltonian of the non-interacting carriers confined in the quantum dot and subjected
to an external magnetic field is generally given by [21]

Hsp =
∫

dr Ψ̂†(r, t)

[
(−ih̄∇r − e

c A(r, t))2

2m∗ + eφ(r, t) + V (r)

]
Ψ̂(r, t) (3)

where V (r) is the three-dimensional quantum dot confining potential and A(r, t), φ(r, t), the
vector and scalar potentials of the external magnetic field. Inserting the second-quantization
field operators to the single-particle Hamiltonian we get

Hsp =
∑

μμ′
Ee

μμ′c†
μ(t)cμ′(t) +

∑

νν′
Eh

νν′ d†
ν (t)dν′ (t), (4)

where the matrix elements [21] of the above Hamiltonian are

Ee
μμ′ =

∫
dr �μe∗(r)

[
(−ih̄∇r − e

c A(r, t))2

2m∗ + eφ(r, t) + V (r)

]
�μ′e(r)

Eh
νν′ = −

∫
dr �νh∗(r)

[
(−ih̄∇r − e

c A(r, t))2

2m∗ + eφ(r, t) + V (r)

]
�ν′h.

(5)

Since our single-particle eigenfunctions are constructed to be orthonormal, the single-particle
Hamiltonian is finally written as

Hsp =
∑

μ

Eμec†
μ(t)cμ(t) +

∑

ν

Eνhd†
ν (t)dν(t) = Hse + Hsh. (6)

Eμe and Eνh are the electron and hole eigenenergies.
The free-photon Hamiltonian is given by

Hγ =
∑

q

h̄ωqα
†
q(t)αq(t), (7)

where a†
q (aq) is the creation (destruction) nonlocal bosonic photon operator, and h̄ωq is the

photon energy.
The carrier–carrier interaction is described by the two-body Hamiltonian [21],

Hcc = 1
2

∫
dr

∫
dr′ Ψ̂†(r, t)Ψ̂†(r′, t)V cc(r − r′)Ψ̂(r′, t)Ψ̂(r, t). (8)

Inserting the second-quantization field operators and neglecting terms that do not conserve the
number of electron–hole pairs, such as Auger recombination and impact ionization [22], as
well as terms that refer to interband exchange interaction, we finally get

Hcc = 1
2

∑

μ1μ2μ3μ4

V ee
μ1μ2μ3μ4

c†
μ1

c†
μ2

cμ3 cμ4 + 1
2

∑

ν1ν2ν3ν4

V hh
ν1ν2ν3ν4

d†
ν1

d†
ν2

dν3dν4

−
∑

μ1μ2ν1ν2

V eh
μ1ν1ν2μ2

c†
μ1

d†
ν1

dν2cμ2 = Hee + Hhh + Heh. (9)

The Coulomb matrix elements have been determined in [23].

V cc
κ1κ2κ3κ4

≡
∫

dr
∫

dr′�κ1∗(r)�κ2∗(r′)V cc(r − r′)�κ3(r′)�κ4(r). (10)

The Hamiltonian Hcγ is obtained when the light field is treated quantum
mechanically [20, 24], and within our notation is expressed by

Hcγ = A1/2
0 i

∑

qμν

ω1/2
q [M∗

μνα
†
q(t)dν(t)cμ(t) − Mμναq(t)c

†
μ(t)d†

ν (t)

− Mμνα
†
q(t)c

†
μ(t)d†

ν (t) + M∗
μναq(t)dν(t)cμ(t)]. (11)
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Here, Mμν = e
∫

�μe∗(r)r�νh∗(r) are the total dipole matrix elements [25] and A0 is the
amplitude of the vector potential of the photon field.

Our kinetic description is based on the density matrix formalism. We consider the
operator

℘μν(t) = dν(t)cμ(t), (12)

the expectation value of which gives the microscopic (optical) polarization of the system. We
also consider the intraband electron and hole single-particle density matrices

n̂μμ′ = c†
μcμ′

n̂νν′ = d†
ν dν′ .

(13)

The expectation values of the diagonal elements correspond to electron and hole distribution
functions f μe and f νh.

3. The luminescence equations

We apply the Heisenberg equation of motion to the photon number expectation values 〈a†
qaq ′ 〉

and to the field–matter correlations of the type 〈a†
q℘μν〉 ≡ 〈a†

qdνcμ〉, and we obtain a set
of luminescence equations. The dynamics for the expectation values of ℘μν and n̂μμ′ (or
n̂νν′ ) is partly determined by combinations of four-carrier operators due to the Coulomb
interaction as well as by a mixture of one-photon and two-carrier operators as a result of
the quantized light–matter interaction. For the decoupling of the above combinations we use
the semiclassical Hartree–Fock scheme. Since the Hartree–Fock level does not anticipate the
influence of dephasing [12], we will include this effect phenomenologically through a small
damping constant γ , which in the relaxation time approximation is related to the dephasing
time τ = h̄

γ
. We focus on the theoretical analysis of incoherent luminescence, where shortly

after an optical excitation of the carriers high above the dot discrete states non-resonant with
the bound excitonic states, all coherent polarizations dephase.

In the specific case of very small electron and hole distribution functions f μe/νh, i.e., in
the linear regime where 1 − f μe − f νh ≈ 1, we can neglect the renormalization term of the
single-particle energies [20], and the three luminescence equations become

ih̄
∂〈a†

qaq ′ 〉
∂ t

= h̄(ωq ′ − ωq)〈a†
qaq ′ 〉 + iA0

1/2
∑

μν

[M∗
μνω

1/2
q ′ 〈a†

q℘μν〉 + Mμνω
1/2
q 〈aq ′℘†

μν〉], (14)

ih̄
∂〈a†

q℘μν〉
∂ t

= (Eμe + Eνh − h̄ωq)〈a†
q℘μν〉 − Mμν

∑

q ′
iA0

1/2ω
1/2
q ′ 〈a†

qaq ′ 〉

−
∑

μ′ν′
V eh

μμ′,νν′ 〈a†
q℘μ′ν′ 〉 + i f μe f νhMμνA0

1/2ω1/2
q , (15)

and

ih̄
∂ f μe

∂ t
= 2iA1/2

0

∑

qν

ω1/2
q Im[−iM∗

μν〈α†
q℘μν〉]. (16)

For given carrier densities, i.e., under quasi-equilibrium conditions, the above set of equations
is restricted to the closed set of equations (14) and (15).

4



J. Phys.: Condens. Matter 19 (2007) 406201 A Zora et al

Figure 1. Cross-sectional view of an ideal lens-shaped QD [29, 31]. (AB) = ρ0, (MN) = s the
radius at the base, and (GN) = h the height of the dot.

(This figure is in colour only in the electronic version)

4. The QD photoluminescence intensity

We make the assumption that the pure stimulated term analogous to 〈a†
qaq ′ 〉 is artificially

switched off. Using the notation  ≡ μν, equation (15) becomes

ih̄
∂

∂ t
〈α†

q (t)℘(t)〉 =
∑

′
(S′ − h̄ωqδ′)〈α†

q℘′ 〉 + i f μe f νhA1/2
0 ω1/2

q M. (17)

S′ ≡ Tδ′ − V eh
′ is the excitonic matrix [23], which is Hermitian in our regime of interest,

and

T ≡ Eμe + Eνh (18)

the summation of the single-particle energies. In appendix B we solve analytically the closed set
of equations (14) and (17) and find an approximate solution of the photoluminescence intensity
(Iem(ωq) ≡ ∂

∂ t 〈a†
qaq〉)

Iem(ωq) ∝ Im
∑

λ

[
1

(Eλ − h̄ωq − iγ )

∫
dr �λ(r, r)

∫
dr

∑



Cλ∗
 �μe∗(r)�νh∗(r) f μe f νh

]
.

(19)

�λ(r, r) is the excitonic eigenfunction which is expanded in terms of the single-particle
states [23]. In the high-temperature regime the carrier occupation probabilities are given by
the Fermi–Dirac distribution functions [26]. The above formula for the PL intensity can be
applied to single or double quantum dots of any given geometry and under a magnetic field of
any magnitude and orientation.

5. Comparison with experiment

We use our theoretical results to interpret the experimental findings reported by Matsuda et al
[13]. The real geometry of self-assembled In(Ga)As quantum dots grown on GaAs substrates
is rather complicated. For example, Kiravittaya et al [27] reported two types of QD shapes:
pyramids elongated along the [1-10] directions bounded by [137] facets, and domes with
a multi-faceted shape. However, we approximate the specific In0.5Ga0.5As self-assembled
quantum dot with a lens-shaped potential (figure 1). s is the radius at the base and h = (GN)

the height of the quantum dot. The thickness of the wetting layer (WL) is tW = 4 ML [13],

5
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Figure 2. The room-temperature emission spectra of a single In0.5Ga0.5As lens-shaped self-
assembled quantum dot with diameter at the base 33.6 nm and height 9.5 nm. The photon energy,
h̄ωq (meV), is measured with respect to the band gap.

which according to the values reported [28], equals 1.1 nm. As shown in figure 1, a quantum
well of thickness l0 = h + tW can become a lens-shaped quantum dot of similar total thickness

at the center and radius ρ0 = l0

√
1 + s2−h2−2twh

hl0
.

In the III–V semiconductor material system, the SK process allows for the formation
of InAs islands on GaAs and it has been shown that the small dots and surrounding host
matrix are dislocation free and strained coherently with GaAs [1]. So, we can approximate the
strained In0.5Ga0.5As material in the dot by just taking the bulk GaAs effective mass value [28].
Moreover, for strained InxGa1−xAs one expects the mixing between light and heavy holes
to be small, and we therefore approximate the hole energy levels in the same way as for an
electron [29] (i.e., one band approximation) but with a different effective mass and depth of
confining potential. The electron (hole) effective mass is 0.0632me (0.11me) [30], where me

is the electron mass. For the conduction-band and valence-band offsets we take �VCB =
224 meV and �VVB = 180 meV, respectively. We calculate the single-particle eigenstates of
electrons and holes within the effective mass and envelope function approximations [23]. Using
an expansion—within a periodicity box—of the electron (or hole) envelope functions into the
orthonormal plane-wave basis |�μ〉 = ∑

k Cμ

k |k〉 [23], we obtain the eigenenergies Eμ as well
as Cμ

k by full three-dimensional (3D) numerical diagonalization; i.e., we solve the following
eigenvalue problem:

∑

k′

[
〈k|

(
p2

2m∗ + V (r)
)

|k′〉 − Eμδk,k′

]
〈k′|�μ〉 = 0. (20)

The 3D confining potential is zero inside the wetting layer and the self-assembled dot,
and �VCB (or �VVB) inside the barrier. The single-particle eigenfunctions have cylindrical
symmetry and resemble the Darwin–Fock states [32, 33]. The details of the theoretical steps of
the calculation of the excitonic eigenfunctions have already been presented in detail [23].

Our theoretical results for the PL intensity are presented in figure 2. All energies are
given with respect to the band gap. We observe two features: the first one at 81.1 meV is

6
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exclusively composed of the ground-state transition, i.e., from 1s(e) to 1s(h). The second
feature at 127.8 meV is mainly composed of the following transitions: from 1s(e) to 2s(h),
and 1p(e) to 1p(h).

Using s = 16.8 and h = 9.5 nm, values which are within the range of the values reported
by Matsuda et al [13], for the size distribution of the QDs, we reproduce the exact value of
the experimental interlevel spacing �E = 47 meV [13]. If the position of the first feature
corresponds to the value 1158 meV reported [13], our theoretical approach results in a value
1077 meV for the band gap, which is close to Eg = 1019 meV reported [30]. Finally, in
order to obtain the experimental full width at half maximum (FWHM) of ≈ 10 meV, we take
γ = 4.9 meV. This value leads to τ = 130 fs, which is in good agreement with values
of the LO phonon dephasing times reported both in experimental [16–18] and in theoretical
studies [19], where the dephasing of optical transitions in QDs has been attributed to second-
order elastic (i.e., without changing the populations of the carrier energy levels) interaction
with LO phonons.

Our theoretical approach for the emission spectra of quantum dots explains satisfactorily
the experimental data reported for the PL spectra collected with a high spatial resolution near-
field microscope. Additionally, it allows the determination of the interlevel spacing as well as
the LO phonon dephasing time.

Acknowledgment
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Appendix A. The semiclassical equation of the optical polarization

Since there is no coherent field and intraband polarization, the initial values are

pμν ≡ 〈℘μν(t = t0)〉 = 0

〈aq(t = t0)〉 = 0.
(A.1)

Using the Heisenberg equation of motion for the microscopic polarization, taking the system
just after the excitation, we obtain

∂ pμν

∂ t
= 1

ih̄

∑

μ′ν′
(Ee,renorm

μμ′ δνν′ + Eh,renorm
νν′ δμμ′)pμ′ν′

− 1

ih̄

∑

μ′ν′
V eh

μνν′μ′ pμ′ν′(1 − f μe − f νh) (A.2)

where

Ee/h,renorm
κ1κ2

= Eκ1δκ1κ2 −
∑

κ3

V ee/hh
κ1κ3κ2κ3

f κ3,e/h (A.3)

are the renormalized single-particle energies. The optical polarization in the excitonic picture
is given by

pλ(t) =
∑



Cλ∗
 p(t). (A.4)

Inserting (A.4), we can rewrite equation (A.2) in the excitonic picture as

∂ pλ

∂ t
= 1

ih̄
Eλ pλ(t). (A.5)

7
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Taking the Fourier transformation of the above equation we have

(Eλ − h̄ω)pλ(ω) = 0. (A.6)

It is obvious that in the vicinity of the excitonic resonances pλ(ω) = 0, and therefore
p(t > t0) = 0.

pμν ≡ 〈℘μν(t)〉 = 0. (A.7)

So, the only nonzero quantities are f μe, f νh, 〈α†
q (t)αq ′(t)〉 and 〈α†

q(t)℘μν(t)〉.

Appendix B. Analytical solution of the QD luminescence equations

The eigenvalue equation for the matrix Ŝ is [23]
∑



Cλ∗
 S′ = EλCλ∗

′ (B.1)

The eigenvector components Cλ
 are the matrix elements of the unitary transformation

connecting the original non-interacting basis |eh〉 with the excitonic basis |λ〉, i.e., Cλ
′ = 〈|λ〉.

The Eλ are the excitonic eigenvalues in the linear regime. Is is obvious that the matrix R̂ with
elements R′ ≡ S′−h̄ωδ′ has the same eigenvectors as the excitonic matrix, and eigenvalues
equal to Eλ − h̄ω. Setting Q = 〈α†

q(t)℘(t)〉 for the correlation term, the steady-state solution
follows from the equation:

∑

′
R′ Q′ = −iA1/2

0 ω1/2
q f μe f νhM ⇔

∑

′

[
∑



Cλ∗
 R′

]
Q′ = −iA1/2

0 ω1/2
q

∑



M f μe f νhCλ∗
 ⇔

(Eλ − h̄ω)

[
∑

′
Cλ∗

′ Q′

]
= −iA1/2

0 ω1/2
q

∑



M f μe f νhCλ∗
 .

(B.2)

By applying this unitary transformation we can rewrite equation (B.2) in the excitonic picture,

Qλ = −iA1/2
0 ω

1/2
q

∑
 M f μe f νhCλ∗



Eλ − h̄ω
, (B.3)

where

Qλ ≡
∑

′
Cλ∗

′ Q′ (B.4)

denotes the correlation term in the excitonic picture. Using the excitonic function orthogonality
relation, i.e.,

∑
λ Cλ

 Cλ∗
′ = δ′ , the first PL equation (14) can be rewritten for q = q′ as

∂

∂ t
〈α†

qαq〉 = A1/2
0 ω

1/2
q

h̄

∑

λ

[
∑

′

∑



M∗
Cλ

 Q′ Cλ∗
′ +

∑

′

∑



M′ Cλ∗
′ Q∗

Cλ


]
. (B.5)

Due to the definition of the dipole matrix elements in the excitonic picture, (Mλ(r) =∑
 Cλ∗

 M(r)), and the correlation term as well, the time evolution of the expectation value
of the number of the photons can be written as

8
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∂

∂ t
〈α†

qαq〉 = A1/2
0 ω

1/2
q

h̄

∑

λ

(QλMλ∗ + Qλ∗Mλ)

= A1/2
0 ω

1/2
q

h̄

∑

λ

(
Mλ∗(−i)A1/2

0 ω
1/2
q

∑
 M f μe f νhCλ∗



Eλ − h̄ω

+ MλiA1/2
0 ω

1/2
q

∑
 Cλ

 M f μe f νh

Eλ − h̄ω

)

= 2|A0|ωq

h̄
Im

∑

λ

∑
′ Cλ

′ M∗
′

∑
 Cλ∗

 M f μe f νh

Eλ − h̄ω
. (B.6)

Expressing the total dipole matrix elements M and the excitonic eigenfunction in terms of the
single-particle functions, and including the damping constant γ , we obtain the approximate
solution of the photoluminescence intensity.
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